A-Level Equations

ID	Questions	Question Image
1	When the mass is doubled and the velocity is halved, the kinetic energy will change by a factor of \qquad A. $1 / 4$ B. $1 / 2$ C. 2 D. 4	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$
2	When the velocity is doubled and the mass is halved the kinetic energy will change by a factor of \qquad A. $1 / 4$ B. $1 / 2$ C. 2 D. 4	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$
3	The potential difference is doubled and the resistance is halved. The power will change by a factor of \qquad A. 1 B. 2 C. 4 D. 8	$P=\frac{V^{2}}{R}$

4	When the potential difference is halved and the resistance is halved, the power will change by a factor of \qquad A. $1 / 8$ B. $1 / 4$ C. $1 / 2$ D. 1	$P=\frac{V^{2}}{R}$
5	Two wires made from the same metal have identical lengths. Wire X has half the diameter as wire Y. The ratio of the resistance of wire X to the resistance of wire Y will be \qquad A. $1: 4$ B. $1: 2$ C. $1: 1$ D. $4: 1$	$R=\frac{\rho L}{A}$
6	A wire X has twice the cross-sectional area and twice the length as wire Y made of the same metal. The ratio of the resistance of wire X to the resistance of wire Y \qquad A. $1: 4$ B. $1: 2$ C. $\quad 1: 1$ D. $2: 1$	$R=\frac{\rho L}{A}$

	An object is dropped from rest and falls freely under gravity. Neglecting the effect of air resistance and other forces, the final velocity will depend on A. $\quad h$ and m B. m and g C. g and h D. $\quad g, h$ and m	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$ $E_{\mathrm{p}}=m g h$
8	The resistance is halved and the current is halved. The power will change by a factor of \qquad A. $1 / 8$ B. $1 / 4$ C. $1 / 2$ D. 1	$P=I^{2} R$
9	A spring has its extension doubled. The energy stored in the spring will change by a factor of \qquad A. $1 / 4$ B. $1 / 2$ C. 2 D. 4	$E=\frac{1}{2} k x^{2}$

10	The current is changed a factor of $1 / 4$ and the resistance is increased by a factor of 4 . The change in the power dissipated will be a factor of	$P=I^{2} R$
A. $1 / 16$		
B. $1 / 8$		
C. $1 / 4$		
D. 1		

